

Hybrid Wet/Dry Cooling for Power Plants

Parabolic Trough Technology Workshop February 14, 2006

Chuck Kutscher
Aaron Buys
Chris Gladden
NREL

Outline

- Overview of cooling options
- Analysis of evaporative enhancement of air-cooled geothermal power plants
- Field measurements at geothermal plant
- Preliminary analysis of trough plant
- Improvements to air-cooled condensers

Water-Saving Options

<u>Approach</u>	<u>Pros</u>	<u>Cons</u>
ACC + WCC in Series	- ACC can handle desuperheating load	Cost of dual equipmentCondensate temp. very limited
ACC + WCC in Parallel	Simple designImproves approach to dry bulb	- Condensate temp. limited by dry bulb
ACC w/ Evap Media	- Can achieve good approach to wet bulb on inlet air	Cost of mediaPressure drop lowersflow rate and LMTD
ACC w/ Spray Nozzles	Simple, low cost of nozzlesLow pressure drop	 Overspray and water waste Cost of water treatment or mist eliminator Nozzle maintenance Potential damage to finned tubes
Deluge of ACC	- Highest enhancement	 Water treatment or protective coating needed

Relevance

- Air-cooled geothermal plants especially susceptible to high ambient temperature
- Plant power decreases ~1% of rated power for every 1°F rise in condenser temperature
- Output of air-cooled plant can drop > 50% in summer, when electricity is highly valued

Spreadsheet Model of Evaporative Enhancements to Existing Air-Cooled Plants

System 1 - Spray Cooling

- Low cost, low air pressure drop
- High water pressure
- Over-spray and carryover or cost of mist eliminator
- Nozzle clogging

System 2 - Munters Cooling

- High efficiency, minimum carryover
- High air pressure drop (reduces air flow rate and decreases LMTD)
- High cost

System 3 – Hybrid Cooling

- Inexpensive and simple, used in poultry industry
- Over-spray, carryover, and nozzle cleaning

System 4 - Deluge Cooling

- Excellent performance
- Danger of scaling and deposition without pure water

System 3 Deluge		System 4 Hybrid		Plant Operation		
Instructions	instructions Model Constants 1		Model Constants 2	System 1.	- Spray System 2	Munters
Ambient Conditi	ons		Economic Parameters —		V)	
Elevatio	n [meters]	1234.44	Plant Live [Years]	25	Cost_labor [\$/hour]	50
Dry Bulb Tempe	erature [F]	77 🔹	Interest rate [%]	15	Cost Water [\$ / kg]	0.00026
Wet Bulb Tempe	erature [F]	55.00	Cost_condenser [\$]	225000	Electric Price Change [% / year]	2,5
C RH An	nbient [%]	25.13	System Constants			
Water Constants	5		Maximum ACHE Dry Air Flow [lbm / hr]	8.40E+06	Number of Condensing Units	15
Density water	[kg/m^3]	1000	Efficiency ACHE Fan [%]	58	Velocity of Air Into Munters Media [m / s]	2.54
	pH water	8.03	Single Unit Intake Area [m^2]	22.3	Velocity of Air Into Mist Eliminator [m / s]	5
Total Disolved Soli	ds [mg / L]	760	Condensing Surface Area [m^2]	146.16	Baseline Pressure Drop Across ACHE [in. H2O]	0.2
Calcium Ion Conte	nt [mg / L]	35	Condenser Height [m]	5	Fan Blade Diameter [meters]	4
Alkalini	ty [mg / L]	156	Constant Speed Fan Cu	rve		
				-5.00E-12 *	*Q^2 + -1,90E-06 *Q +	5.38E-01

Example Analysis: Net Power Produced

Example Cost Results

Note: Value of electricity will be affected by time-of-day rates and capacity payments.

Geothermal Analysis Conclusions

- Deluge most attractive if scaling/corrosion issues can be addressed
- Systems 1 to 3 obtain ~40 kWh/kgal of water; deluge can produce an average of ~60 kWh/kgal
- Results very sensitive to water costs, electric rate structure, installation costs

Coated Fin Test Results

OMP-coated fin unaffected by salt spray

Plain fin pitted

Measurements at Mammoth

Measurements at Mammoth Binary-Cycle Geothermal Power Plant

Munters system

Hybrid spray/Munters system

Mammoth Measurement Results: 2001

- Field instrumentation: Type T thermocouples, optical dew point (chilled mirror) hygrometer, handheld anemometer
- Munters had 79% saturation efficiency; hybrid was 50%
- Flow rate with Munters dropped 22-28%
- Munters increased net power 62% (800 kW to 1,300 kW) at 78°F ambient

Munters Performance at Mammoth

Unit 200 Performance Data

Mammoth Measurement Results: 2002

 Munters system modified, brine used for cooling water. Munters efficiency dropped from 79% to 66%

Geothermal Conclusions

- All operators of air-cooled plants interested in evaporative enhancement
- Costs at existing plants are site-specific and negotiable; \$0.50 to \$2.00 per thousand gallons
- Reclaimed water becoming more widely available
- Two-Phase Engineering showed successful use of nozzles with brine
- Can reduce average cost of electricity by about 0.3 ¢/kWh, depending on cost of water
- Capacity payments can be as high as 30 ¢/kWh and lower average cost of electricity by 2–3 ¢/kWh

Parabolic Trough Plant Preliminary Analysis

UW EES Model
Power Out and Ht. Rejection
vs. Condenser
Pressure and Field Flowrate

NREL Hour-by-hour
EES Model
Of Condenser Types and
Evap Cooling

Excelergy Field Flowrate vs. TMY2 Radiation

NREL Excel Model
Of Costs

Cases Examined

- Air-Cooled
- Water-Cooled
- Air-Cooled with Spray Enhancement

General Assumptions

- 30 MW_e SEGS plant, Daggett weather
- \$0.18/kWh electricity (€0.15/kWh)
- Water at \$1.95/kgal (\$515/m³, €430/m³)
- 15% interest rate
- 30-year life

Water-Cooled Plant

- Shell-and-tube condenser + cooling tower
- $T_{wb} = 68^{\circ}F (20^{\circ}C)$
- Approach = $10^{\circ}F$ (5.6°C)
- Range = 20° F (11.1°C)
- Pinch = $5^{\circ}F$ (2.8°C)
- $U = 400 \text{ Btu/h-ft}^2 {}^{\circ}F (2270 \text{ W/m}^2 {}^{\circ}C)$

Air-Cooled Plant

- Finned tube condenser
- Tdb = $104^{\circ}F(40^{\circ}C)$
- ITD = 40° F (22°C)
- Pinch = $5^{\circ}F$ (2.8°C)
- $U = 150 Btu/h-ft^2-°F (850 W/m^2-°C)$

Evaporative Pre-Cooling

- 300 psig spray nozzles
- 70% evaporation efficiency
- 80% saturation efficiency
- Munters DRIFdek mist eliminator

Water Use for Different Condenser Types

Next Steps

- Evaluate potential for water restrictions
- Develop full plant EES model
- Improve cost estimation
- Analyze parallel wet-dry system

Brief Review of NREL R&D on Advanced Fins for Air-Cooled Condensers

McElroy Enhanced Fins

Test Section

Heat Transfer vs. Hydraulic Power

Different Fin Types (Staggered Array)

Tabbed Fin Concept

Tabbed Plate Fin Heat Exchanger

Individual Fins

GEA fins w/spacers

NREL tabbed circular fin

Detailed CFD Model Isometric Views: Heat Flux and Total Pressure

Surface Heat Flux

Total Pressure

Recent Tabbed Fin CFD Results

